Regulatory potential of polymorphic variants of genes of BDNF-mediated protein kinase signaling pathways associated with schizophrenia

 

Authors

 

A.S. Boiko

Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation

D.Z. Paderina

Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University” of the Ministry of Health of the Russian Federation, Tomsk, Russian Federation

S.A. Ivanova

Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation; Federal State Budgetary Educational Institution of Higher Education “Siberian State Medical University” of the Ministry of Health of the Russian Federation, Tomsk, Russian Federation

 

https://doi.org/10.26617/1810-3111-2025-3(128)-5-16

 

Journal: Siberian Herald of Psychiatry and Addiction Psychiatry. 2025; 3 (128):  5-16.

 

Abstract

Background. Schizophrenia is a severe mental illness with unclear etiology and pathogenesis. Literature data indicate an important role of genetic factors. In particular, changes in the regulatory potential of genes encoding BDNF and a number of protein kinase signaling pathways can play a significant role in the development of schizophrenia and the formation of clinical heterogeneity of the disease. Objective. To identify the genetic regulatory potential of genes encoding BDNF-mediated protein kinase signaling pathways in patients with schizophrenia based on bioinformatics analysis. Material and methods. The regulatory potential of the relationships between single nucleotide polymorphisms and gene expression was assessed using genetic variability data from the Genotype-Tissue Expression project portal. Results. The conducted bioinformatics analysis using open resources allowed us to reveal that polymorphic variants of rs8136867 of the MAPK gene, rs11030104 of the BDNF gene, rs334558 of the GSK3β gene and rs1130233 of the AKT1 gene, associated with clinical heterogeneity of schizophrenia, are expression quantitative trait loci (eQTL) and have significant regulatory potential for influencing other genes. The identified associations and regulatory potential confirm the involvement of the studied genes in the pathogenesis of schizophrenia and its clinical heterogeneity.

 

Keywords: schizophrenia, polymorphic variant, brain-derived neurotrophic factor, protein kinase signaling pathways, quantitative trait locus, regulatory potential.

 

Article (pdf)

 

Contacts

 

This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Materials  

For citation: Boiko A.S., Paderina D.Z., Ivanova S.A. Regulatory potential of polymorphic variants of genes of BDNF-mediated protein kinase signaling pathways associated with schizophrenia. Siberian Herald of Psychiatry and Addiction Psychiatry.2025; 3 (128): 5-16. https://doi.org/10.26617/1810-3111-2025-3(128)-5-16

REFERENCES

  1. Nagi Y, Al-Ajlouni YA, Al Ta'ani O, Bak M, Makarem N, Haidar A. The burden of mental disorders and substance abuse in the Middle East and North Africa (MENA) region: findings from the Global Burden of Disease Study. Soc Psychiatry Psychiatr Epidemiol. 2025 Apr 8. https://doi.org/10.1007/s00127-025-02885-5. Epub ahead of print. PMID: 40198332.
  2. Kornetova EG, Galkin SA, Kornetov AN, Ivanova SA, Bokhan NA. Phenotypes of schizophrenia. Siberian Herald of Psychiatry and Addiction Psychiatry. 2025;2(127):15-32. https://doi.org/10.26617/1810-3111-2025-2(127)-15-32 (in Russian).
  3. Kornetov AN, Kornetova EG, Golenkova AV, Kozlova SM, Arzhanik MB, Samoylenko ZhA, Boiko AS, Semke AV. Neurocognitive deficits in clinical polymorphism of schizophrenia: typology, expression and syndromal overlaps. Bulletin of Siberian Medicine. 2019;18(2):107-118. https://doi.org/10.20538/1682-0363-2019-2-107-118 (in Russian).
  4. Kuepper R, Skinbjerg M, Abi-Dargham A. The dopamine dysfunction in schizophrenia revisited: new insights into topography and course. Handb Exp Pharmacol. 2012;(212):1-26. https://doi.org/10.1007/978-3-642-25761-2_1. PMID: 23129326.
  5. Boiko AS, Bokhan NA, Buneva VN, Vetlugina TP, Zozulya SA, Ivanova SA, Klyushnik TP, Kornetova EG, Losenkov IS, Oleychik IV, Semke AV, Smirnova LP, Uzbekov MG, Fedorenko OYu. Biological markers of schizophrenia: search and clinical application. Novosibirsk: Siberian Branch of the Russian Academy of Sciences, 2017:148 (in Russian).
  6. Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune system abnormalities in schizophrenia: An integrative view and translational perspectives. Front Psychiatry. 2022 Apr 25;13:880568. https://doi.org/10.3389/fpsyt.2022.880568. PMID: 35546942; PMCID: PMC9082498.
  7. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012 Apr;64(2):238-58. https://doi.org/10.1124/pr.111.005108. Epub 2012 Mar 8. PMID: 22407616; PMCID: PMC3310485.
  8. Mikhalitskaya EV, Levchuk LA. Brain neuroplasticity: brain-derived neurotrophic factor and protein kinase signaling pathways (literature review). Siberian Herald of Psychiatry and Addiction Psychiatry. 2022;3(116):44-53. https://doi.org/10.26617/1810-3111-2022-3(116)-44-53 (in Russian).
  9. Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener. 2022 Jan 28;11(1):4. https://doi.org/10.1186/s40035-022-00279-0. PMID: 35090576; PMCID: PMC8796548.
  10. Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry. 2013 Jun 17;4:45. https://doi.org/10.3389/fpsyt.2013.00045. PMID: 23785335; PMCID: PMC3683823.
  11. Levchuk LA, Vyalova NM, Mikhalitskaya EV, Semkina AA, Ivanova SA. The role of BDNF in the pathogenesis of neurological and mental disorders. Modern Problems of Science and Education. 2018:6:58. https://doi.org/10.17513/spno.28267(in Russian).
  12. Mohammadi A, Amooeian VG, Rashidi E. Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to schizophrenia, Parkinson's and Alzheimer's diseases. Curr Gene Ther. 2018;18(1):45-63. https://doi.org/10.2174/1566523218666180302163029. PMID: 29512462.
  13. Levchuk LA, Meeder EMG, Roschina OV, Loonen AJM, Boiko AS, Michalitskaya EV, Epimakhova EV, Losenkov IS, Simutkin GG, Bokhan NA, Schellekens AFA, Ivanova SA. Exploring brain derived neurotrophic factor and cell adhesion molecules as biomarkers for the transdiagnostic symptom anhedonia in alcohol use disorder and comorbid depression. Front Psychiatry. 2020 Apr 20;11:296. https://doi.org/10.3389/fpsyt.2020.00296. PMID: 32372985; PMCID: PMC7184244.
  14. Nikitina MA, Bragina EYu, Nazarenko MS, Levchuk LA, Ivanova SA, Boiko AS, Gomboeva DE, Koroleva ES, Alifirova VM. The relationship between the rs6265 polymorphism of the BDNF gene and the level of serum neurotrophic factor in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(1):114‑120. https://doi.org/10.17116/jnevro2024124011114(in Russian).
  15. Numakawa T, Kajihara R. The role of brain-derived neurotrophic factor as an essential mediator in neuronal functions and the therapeutic potential of its mimetics for neuroprotection in neurologic and psychiatric disorders. Molecules. 2025 Feb 12;30(4):848. https://doi.org/10.3390/molecules30040848. PMID: 40005159; PMCID: PMC11857940.
  16. Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A. GSK3β: A master player in depressive disorder pathogenesis and treatment responsiveness. Cells. 2020 Mar 16;9(3):727. https://doi.org/10.3390/cells9030727. PMID: 32188010; PMCID: PMC7140610.
  17. Ivanova SA, Losenkov IS, Bokhan NA. Role of glycogen synthase kinase-3 in the pathogenesis of mental disorders. S.S. Korsakov Journal of Neurology and Psychiatry. 2014;114(6):93‑100 (in Russian).
  18. Li F, Ren X, Liu JX, Wang TD, Wang B, Wei XB. Integrative transcriptomic and proteomic analysis reveals that SERPING1 inhibits neuronal proliferation via the CaMKII-CREB-BDNF pathway in schizophrenia. World J Psychiatry. 2025 Feb 19;15(2):100214. https://doi.org/10.5498/wjp.v15.i2.100214. PMID: 39974493; PMCID: PMC11758061.
  19. Boiko AS, Pozhidaev IV, Mikhalitskaya EV, Paderina DZ, Vyalova NM, Kornetova EG, Bokhan NA, Ivanova SA. The role of polymorphic variants of neuroplasticity genes and protein kinases in the formation of an unfavorable course of schizophrenia. Psychiatry, Psychotherapy and Clinical Psychology. 2025;16(1):13-22 https://doi.org/10.34883/PI.2025.16.1.001(in Russian).
  20. Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc Lond B Biol Sci. 2013 May 6;368(1620):20120362. https://doi.org/10.1098/rstb.2012.0362. PMID: 23650636; PMCID: PMC3682727.
  21. Zhang JP, Lencz T, Geisler S, DeRosse P, Bromet EJ, Malhotra AK. Genetic variation in BDNF is associated with antipsychotic treatment resistance in patients with schizophrenia. Schizophr Res. 2013 May;146(1-3):285-8. https://doi.org/10.1016/j.schres.2013.01.020. Epub 2013 Feb 19. PMID: 23433505; PMCID: PMC3622803.
  22. Devlin P, Cao X, Stanfill AG. Genotype-expression interactions for BDNF across human brain regions. BMC Genomics. 2021 Mar 23;22(1):207. https://doi.org/10.1186/s12864-021-07525-1. PMID: 33757426; PMCID: PMC7989003.
  23. Millischer V, Matheson GJ, Martinsson L, Römer Ek I, Schalling M, Lavebratt C, Backlund L. AKT1 and genetic vulnerability to bipolar disorder. Psychiatry Res. 2020 Feb;284:112677. https://doi.org/10.1016/j.psychres.2019.112677. Epub 2019 Nov 4. PMID: 31810747.
  24. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004 Feb;36(2):131-7. https://doi.org/10.1038/ng1296. Epub 2004 Jan 25. PMID: 14745448.
  25. Coccia E, Planells-Ferrer L, Badillos-Rodríguez R, Pascual M, Segura MF, Fernández-Hernández R, López-Soriano J, Garí E, Soriano E, Barneda-Zahonero B, Moubarak RS, Pérez-García MJ, Comella JX. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020 Feb 3;11(2):82. https://doi.org/10.1038/s41419-020-2282-x. PMID: 32015347; PMCID: PMC6997380.
  26. Athanasopoulou K, Adamopoulos PG, Scorilas A. Structural characterization and expression analysis of novel MAPK1 transcript variants with the development of a multiplexed targeted nanopore sequencing approach. Int J Biochem Cell Biol. 2022 Sep;150:106272. https://doi.org/10.1016/j.biocel.2022.106272. Epub 2022 Jul 22. PMID: 35878809.
  27. Calabrò M, Mandelli L, Crisafulli C, Sidoti A, Jun TY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU, Serretti A. Genes involved in neurodevelopment, neuroplasticity, and bipolar disorder: CACNA1C, CHRNA1, and MAPK1. Neuropsychobiology. 2016;74(3):159-168. https://doi.org/10.1159/000468543. Epub 2017 May 12. PMID: 28494468.
  28. Calati R, Crisafulli C, Balestri M, Serretti A, Spina E, Calabrò M, Sidoti A, Albani D, Massat I, Höfer P, Amital D, Juven-Wetzler A, Kasper S, Zohar J, Souery D, Montgomery S, Mendlewicz J. Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in mood disorder patients. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Jul 1;44:271-8. https://doi.org/10.1016/j.pnpbp.2013.03.005. Epub 2013 Mar 26. PMID: 23537502.
  29. Ma X, Li Q, Chen G, Xie J, Wu M, Meng F, Liu J, Liu Y, Zhao D, Wang W, Wang D, Liu C, Dai J, Li C, Cui M. Role of hippocampal mir-132-3p in modifying the function of protein phosphatase Mg2+/Mn2+-dependent 1 F in Depression. Neurochem Res. 2023 Aug;48(8):2514-2530. https://doi.org/10.1007/s11064-023-03926-8. Epub 2023 Apr 10. PMID: 37036545.
  30. Kwok JB, Hallupp M, Loy CT, Chan DK, Woo J, Mellick GD, Buchanan DD, Silburn PA, Halliday GM, Schofield PR. GSK3B polymorphisms alter transcription and splicing in Parkinson's disease. Ann Neurol. 2005 Dec;58(6):829-39. https://doi.org/10.1002/ana.20691. PMID: 16315267.
  31. Levchenko A, Losenkov IS, Vyalova NM, Simutkin GG, Bokhan NA, Wilffert B, Loonen AJ, Ivanova SA. The functional variant rs334558 of GSK3B is associated with remission in patients with depressive disorders. Pharmgenomics Pers Med. 2018 Jul 20;11:121-126. https://doi.org/10.2147/PGPM.S171423. PMID: 30050316; PMCID: PMC6055890.
  32. Yang J, Ke S, Qiao Z, Yang X, Qiu X, Song X, Zhao E, Zhou J, Zhao M, Yang Y, Fang D, Cao D. Interactions between glycogen synthase kinase-3β gene polymorphisms, negative life events, and susceptibility to major depressive disorder in a Chinese population. Front Psychiatry. 2021 Feb 15;11:503477. https://doi.org/10.3389/fpsyt.2020.503477. PMID: 33658947; PMCID: PMC7917206.
  33. Nakano M. [Novel regulatory mechanisms for expression of drug metabolism-related factors]. Yakugaku Zasshi. 2024;144(11):983-989. Japanese. https://doi.org/10.1248/yakushi.24-00141. PMID: 39496430.