The importance of ontogenetic community and morphological-functional similarity of the hippocampus and buccal epithelium for the development of minimally invasive methods for diagnosing Alzheimer's disease (literature review)

 

Authors

 

A.A. Melnik

Federal State Budgetary Educational Institution of Higher Education “Ural State Medical University” of the Ministry of Health of the Russian Federation, Yekaterinburg, Russian Federation

V.V. Bazarnyi

Federal State Budgetary Educational Institution of Higher Education “Ural State Medical University” of the Ministry of Health of the Russian Federation, Yekaterinburg, Russian Federation

K.P. Dik

Federal State Budgetary Educational Institution of Higher Education “Ural State Medical University” of the Ministry of Health of the Russian Federation, Yekaterinburg, Russian Federation

A.P. Sidenkova

Federal State Budgetary Educational Institution of Higher Education “Ural State Medical University” of the Ministry of Health of the Russian Federation, Yekaterinburg, Russian Federation

 

https://doi.org/10.26617/1810-3111-2025-2(127)-109-118

 

Journal: Siberian Herald of Psychiatry and Addiction Psychiatry. 2025; 2 (127):  109-118.

 

Abstract

Background. Alzheimer's disease is a socially significant problem, since it is one of the leading causes of patients’ disability, which significantly reduces their quality of life. There is a need to find a diagnostic method that would allow identifying brain morphological disorders at pre-dementia stages of the disease. High involvement of hippocampal structures in Alzheimer's pathology determines the need to study it for the purpose of early neurodegenerative diseases. An urgent scientific task is to search for biological tissue obtained minimally invasively, having an embryonic community with the hippocampus, which determines the structural similarity of cells in health and degeneration. Buccal epithelial tissue and the central nervous system have an ectodermal origin in embryogenesis, which allows considering histological examination of the buccal epithelium as a non-invasive method for studying degenerative processes in the central nervous system. Objective: to describe ontogenetic community and morphofunctional similarity of the hippocampal and buccal epithelium tissues, their participation in the genesis of neurodegenerative diseases for the further development of minimally invasive methods for diagnosing AD. Materials and Methods: a descriptive review of scientific papers from the PubMed text database and the eLibrary scientific electronic library with the use of keywords. A step-by-step selection of information was carried out in December 2024. The search volume was not limited by the year of the publication. In accordance with the inclusion and exclusion criteria, 13 articles published from 2012 to 2024 were selected for this review. Results and Conclusions. The cellular structure of BE is subject to age-related changes; under conditions of neurodegeneration, the volume of signs of “aging” in the cellular structures of BE increases. Buccal epithelium is a promising peripheral tissue for identifying potential markers of AD, since, like brain cells, it originates from differentiated ectodermal tissue. The method for obtaining buccal epithelial cells is low-traumatizing, fast and cost-effective. In the diagnostic process, it is necessary to take into account the exceptional importance of parallel assessment of the patient's cognitive functions and the results of neuroimaging studies.

 

Keywords: buccal epithelium, Alzheimer's disease, hippocampus, diagnostic methods.

 

Article (pdf)

 

Contacts

This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Materials

 

For citation: Melnik A.A., Bazarnyi V.V., Dik K.P., Sidenkova A.P. The importance of ontogenetic community and morphological-functional similarity of the hippocampus and buccal epithelium for the development of minimally invasive methods for diagnosing Alzheimer's disease (literature review). Sibirskii Vestnik Psikhiatrii i Narkologii.2025; 2 (127): 109-118. https://doi.org/10.26617/1810-3111-2025-2(127)-109-118

 

REFERENCES

 

  1. Khetagurova AK, Galiulina OV, Sidenkova AP, Naboychenko ES. The Actuality of inter-sectoral interaction in development of mechanisms of healthy aging. Problems of Social Hygiene of Health Care and History of Medicine. 2018 Mar;26(2):68-71. https://doi.org/10.1016/0869-866X-2018-26-2-68-71. PMID: 30184389 (in Russian).
  2. Myakotnykh VS, Sidenkova AP, Borovkova TA, Berezina DA. Medical, psy-chological, social and gender aspects of aging in modern Russia. Advances in Gerontology. 2014;27(2):302-9. PMID: 25306663 (in Russian).
  3. Hu K, Li Y, Yu H, Hu Y. CTBP1 confers protection for hippocampal and cortical neurons in rat models of Alzheimer's disease. Neuroimmunomodulation. 2019;26(3):139-152. https://doi.org/10.1159/000500942. Epub 2019 Jul 24. PMID: 31340205.
  4. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci. 2001 May 1;21(9):3017-23. https://doi.org/10.1523/JNEUROSCI.21-09-03017.2001.PMID: 11312286; PMCID: PMC6762571.
  5. Lancaster TM, Hill MJ, Sims R, Williams J. Microglia ‒ mediated immunity partly contributes to the genetic association between Alzheimer's disease and hippocampal volume. Brain Behav Immun. 2019 Jul; 79:267-273. https://doi.org/10.1016/j.bbi.2019.02.011. Epub 2019 Feb 15. PMID: 30776473; PMCID: PMC6605284.
  6. Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech. 2022 Feb;12(2):55. https://doi.org/10.1007/s13205-022-03123-4. Epub 2022 Feb 1. PMID: 35116217; PMCID: PMC8807768.
  7. Ball MJ, Fisman M, Hachinski V, Blume W, Fox A, Kral VA, Kirshen AJ, Fox H, Merskey H. A new definition of Alzheimer's disease: a hippocampal dementia. Lancet. 1985 Jan 5;1(8419):14-6. https://doi.org/10.1016/s0140-6736(85)90965-1. PMID: 2856948.
  8. Boutet C, Chupin M, Lehéricy S, Marrakchi-Kacem L, Epelbaum S, Poupon C, Wiggins C, Vignaud A, Hasboun D, Defontaines B, Hanon O, Dubois B, Sarazin M, Hertz-Pannier L, Colliot O. Detection of volume loss in hippocampal layers in Alzheimer's disease using 7 T MRI: a feasibility study. NeuroimageClin. 2014 Jul 31;5:341-8. https://doi.org/10.1016/j.nicl.2014.07.011. PMID: 25161900; PMCID: PMC4141975.
  9. Reddy PH, Yin X, Manczak M, Kumar S, Pradeepkiran JA, Vijayan M, Reddy AP. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease. Hum Mol Genet. 2018 Jul 15;27(14):2502-2516. https://doi.org/10.1093/hmg/ddy154. PMID: 29701781; PMCID: PMC6031001.
  10. Knierim JJ. The hippocampus. Curr Biol. 2015 Dec 7; 25 (23):R1116-21. https://doi.org/10.1016/j.cub.2015.10.049.PMID: 26654366.
  11. Asai H, Ohkawa N, Saitoh Y, Ghandour K, Murayama E, Nishizono H, Matsuo M, Hirayama T, Kaneko R, Muramatsu SI, Yagi T, Inokuchi K. Pcdhβdeficiency affects hippocampal CA1 ensemble activity and contextual fear discrimination. MolBrain. 2020 Jan 20;13(1):7. https://doi.org/10.1186/s13041-020-0547-z. PMID: 31959219; PMCID: PMC6971911.
  12. de Flores R, La Joie R, Chételat G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer's disease. Neuroscience. 2015 Nov 19; 309:29-50. https://doi.org/10.1016/j.neuroscience.2015.08.033. Epub 2015 Aug 22. PMID: 26306871.
  13. Lace G, Savva GM, Forster G, de Silva R, Brayne C, Matthews FE, Barclay JJ, Dakin L, Ince PG, Wharton SB; MRC-CFAS. Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain. 2009 May;132(Pt5):1324-34. https://doi.org/10.1093/brain/awp059. Epub 2009 Mar 24. PMID: 19321462.
  14. Elder GJ, Mactier K, Colloby SJ, Watson R, Blamire AM, O'Brien JT, Taylor JP. The influence of hippocampal atrophy on the cognitive phenotype of dementia with Lewy bodies. Int J Geriatr Psychiatry. 2017 Nov; 32(11):1182-1189. https://doi.org/10.1002/gps.4719. Epub 2017 Apr 20. PMID: 28425185; PMCID: PMC5655697.
  15. Bazarnyi VV, Sidenkova AP, Rezaikin AV, Myakotnykh VS, Borovkova TA, Selkina EO, Polushina LG, Maksimova AYu, Van’kova EA. The possibility of using the results of the study of oral fluid and buccal epithelium in the diagnosis of Alzheimer's disease. Advances in Gerontology. 2021;34(4):550-557. https://doi.org/10.34922/AE.2021.34.4.007 (in Russian).
  16. Myakotnykh VS, Sidenkova AP, Kharitonova MP, Meshchaninov VN, Melnik AA, Khilyuk DA. The state of the oral cavity in the early diagnosis and prediction of cognitive disorders. Advances in Gerontology. 2022;35(3):418-428. https://doi.org/10.34922/AE.2022.35.3.014 (in Russian).
  17. de Lahunta A, Glass EN, Kent M. Embryonic development of the central nervous system. Vet Clin North Am Small Anim Pract. 2016 Mar;46(2):193-216. https://doi.org/10.1016/j.cvsm.2015.10.011. Epub 2015 Dec 15. PMID: 26698228.
  18. Haldipur P, Dang D, Millen KJ. Embryology. Handb Clin Neurol. 2018;154:29-44. https://doi.org/10.1016/B978-0-444-63956-1.00002-3. PMID: 29903446; PMCID: PMC6231496.
  19. François M, Leifert W, Hecker J, Faunt J, Martins R, Thomas P, Fenech M. Altered cytological parameters in buccal cells from individuals with mild cognitive impairment and Alzheimer's disease. Cytometry A. 2014 Aug;85(8):698-708.https://doi.org/10.1002/cyto.a.22453. Epub 2014 Feb 25. PMID: 24616437.
  20. Siddiqui MS, Francois M, Rainey-Smith S, Martins R, Masters CL, Ames D, Rowe CC, Macaulay LS, Fenech MF, Leifert WR. Evaluation of GammaH2AX in buccal cells as a molecular biomarker of DNA damage in Alzheimer's disease in the AIBL Study of Ageing. Life (Basel). 2020 Aug 6;10(8):141. https://doi.org/10.3390/life10080141. PMID: 32781776; PMCID: PMC7459751.
  21. Pukhal'skaya AE, Linkova NS, Umnov RS, Kozlov KL, Kvetnoy IM, Pal'tsev MA. Sirtuins: predictive molecular diagnostics of Alzheimer's disease in long-livers. Molecular Medicine. 2022;20(1):31-34. https://doi.org/10.29296/24999490-2022-01-05(in Russian).
  22. Myakotnykh VS, Sidenkova AP, Bazarnyi VV, Melnik AA, Urazaeva AT, Khilyuk DA. Diagnostic possibilities of studying the buccal epithelium in the elderly with cognitive impairments. Siberian Herald of Psychiatry and Addiction Psychiatry. 2022;1(114):40-45. https://doi.org/10.26617/1810-3111-2022-1(114)-5-36(in Russian).
  23. Pal'tsev MA, Zuev VA, Kozhevnikova EO, Linkova NS, Kvetnaya TV, Polyakova VO, Kvetnoy IM. Molecular markers of early diagnosis of Alzheimer's disease: research prospects in peripheral tissues. Advances in Gerontology. 2017;30(6):809-817 (in Russian).
  24. Lobzin VYu, Grigoriev SG, Emelin AYu, Alekseeva LA. Method of differential diagnostics of Alzheimer's disease, vascular and mixed dementia. RU 2578188C1. Publ. 2016.03.20 (in Russian).
  25. Lobzin VYu. Comprehensive early diagnosis of cognitive impairment. S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(11):72-79. https://doi.org/10.17116/jnevro201511511172-79(in Russian).
  26. Kose Ozlece H, Findik Guvendi G, Huseyinoglu N, Ehi Y, Kivrak Y. Cytological and cytometric analysis of oral mucosa in patients with Alzheimer's and Parkinson's disease. Neuropsychiatr Dis Treat. 2018 Jul 31; 14:1901-1906. https://doi.org/10.2147/NDT.S157731. PMID: 30104876; PMCID: PMC6074829.
  27. François M, Fenech MF, Thomas P, Hor M, Rembach A, Martins RN, Rainey-Smith SR, Masters CL, Ames D, Rowe CC, Macaulay SL, Hill AF, Leifert WR, The Australian Imaging Biomarkers and Lifestyle Study Research Group. High content, multi-parameter analyses in buccal cells to identify Alzheimer's disease. Curr Alzheimer Res. 2016;13(7):787-99. https://doi.org/10.2174/1567205013666160315112151. PMID: 26975368.
  28. Mathur S, Glogowska A, McAvoy E, Righolt C, Rutherford J, Willing C, Banik U, Ruthirakuhan M, Mai S, Garcia A. Three-dimensional quantitative imaging of telomeres in buccal cells identifies mild, moderate, and severe Alzheimer's disease patients. J Alzheimers Dis. 2014;39(1):35-48. https://doi.org/10.3233/JAD-130866. PMID: 24121960.
  29. Thomas P, Hecker J, Faunt J, Fenech M. Buccal micronucleus cytome biomarkers may be associated with Alzheimer's disease. Mutagenesis. 2007 Nov; 22(6):371-9. https://doi.org/10.1093/mutage/gem029. Epub 2007 Aug 20. PMID: 17709794.
  30. Bolognesi C, Bonassi S, Knasmueller S, Fenech M, Bruzzone M, Lando C, Ceppi M. Clinical application of micronucleus test in exfoliated buccal cells: A systematic review and metanalysis. Mutat Res Rev Mutat Res. 2015 Oct-Dec;766:20-31. https://doi.org/10.1016/j.mrrev.2015.07.002. Epub 2015 Aug 5. PMID: 26596545.
  31. Sidenkova A. Use of the results of the study of oral fluid and buccal epithelium in the diagnosis of Alzheimer`s disease. Eur Psychiatry. 2022 Sep 1; 65 (Suppl 1):S607. https://doi.org/10.1192/j.eurpsy.2022.1556. PMCID: PMC9567743.
  32. Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022 Feb;75(1):25-36. https://doi.org/10.4097/kja.21209. Epub 2022 Jan 18. PMID: 35124947; PMCID: PMC8831439.
  33. Yin Y, Zhang J, Guo Q, Shen C. Research and progress on the association of porphyromonas gingivalis with lung cancer. Zhongguo Fei Ai Za Zhi. 2024 Oct 20;27(10):799-804. Chinese. https://doi.org/10.3779/j.issn.1009-3419.2024.101.28. PMID: 39631837; PMCID: PMC11629007.
  34. Bazarnyi VV, Mandra YV, Sidenkova AP, Polushina LG, Maksimova AY, Sementsova EA, Svetlakova EN, Nasretdinova NY, Kotikova AY. Age features of buccal epithelium in practically healthy people. Klin Lab Diagn. 2022 Jun 20;67(6):345-349. English. https://doi.org/10.51620/0869-2084-2022-67-6-345-349. PMID: 35749599.