The content of non-esterified fatty acids and some adipokines in the blood serum in patients with the first episode of schizophrenia and the nature of their changes during antipsychotic therapy

 

Authors

 

A.S. Ozornin

Federal State Budgetary Educational Institution of Higher Education “Chita State Medical Academy” of the Ministry of Health of the Russian Federation, Chita, Russian Federation

N.V. Govorin

Federal State Budgetary Educational Institution of Higher Education “Chita State Medical Academy” of the Ministry of Health of the Russian Federation, Chita, Russian Federation

A.V. Sakharov

Federal State Budgetary Educational Institution of Higher Education “Chita State Medical Academy” of the Ministry of Health of the Russian Federation, Chita, Russian Federation

 

https://doi.org/10.26617/1810-3111-2024-1(122)-51-61

 

Journal: Siberian Herald of Psychiatry and Addiction Psychiatry. 2024; 1 (122):  51-61.

 

Abstract

Introduction. According to various authors, the prevalence of metabolic syndrome among patients with schizophrenia was 27-67%. Metabolic syndrome was pathogenetically related to cardiovascular pathology, which was the leading cause of death in patients with schizophrenia. At the same time, the increased content of non-esterified fatty acids in the blood serum and aberrant production of adipokines were important in the mechanisms of the development of metabolic syndrome. Objective: to study the content of non-esterified fatty acids and adipokines (adiponectin, adipsin and leptin) in the blood serum of patients with the first episode of schizophrenia during therapy with haloperidol and risperidone. Material and Methods. The study was carried out on the basis of the department of the first psychotic episode of the Regional Clinical Psychiatric Hospital named after V.Kh. Kandinsky. The main group included 212 patients (109 males and 103 females) with the diagnosis of “paranoid schizophrenia, observation period less than a year” (F20.09), their mean age was 27±6 years. The control group included mentally healthy individuals who were not registered as psychiatric patients (n=132), comparable in gender, age, body weight, body mass index to the patients of the main group. Depending on the acute treatment, two clinical groups were formed: group 1 (n=105) – therapy with the first generation antipsychotic haloperidol, group 2 (n=107) – therapy with the second generation antipsychotic risperidone. The content of non-esterified fatty acids (NEFA) in blood serum was measured using the colorimetric method for determining copper salts. The level of glycerol in blood serum was determined by the enzymatic photometric test with glycerol-3-phosphate oxidase. Multiplex analysis was used to study adipokines. Results. In patients with the first episode of schizophrenia, before the start of psychopharmacotherapy, the levels of NEFA, adiponectin and adipsin in the blood serum exceeded the values in the control group. After 8 weeks of therapy with haloperidol or risperidone, an increase in serum levels of NEFA and multidirectional changes in the content of adipokines were detected: when taking haloperidol, the amount of adiponectin increased, and when taking risperidone, the content of adiponectin decreased, and the concentration of leptin increased. Conclusion. Therapy with haloperidol and risperidone promoted similar changes in serum NEFA levels, but the effects of these drugs on the amount of adipokines differed. Further studies were needed to examine the effect of antipsychotics on adipokines and other indicators of lipid metabolism.

 

Keywords: schizophrenia, first episode, antipsychotics, haloperidol, risperidone, metabolic syndrome, non-esterified fatty acids, adipokines.

 

Article (pdf)

 

Contacts

This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Materials  

For citation: Ozornin A.S., Govorin N.V., Sakharov A.V. The content of non-esterified fatty acids and some adipokines in the blood serum in patients with the first episode of schizophrenia and the nature of their changes during antipsychotic therapy. Siberian Herald of Psychiatry and Addiction Psychiatry.2024; 1

 

REFERENCES

  1. Heald A, Pendlebury J, Anderson S, Narayan V, Guy M, Gibson M, Haddad P, Livingston M. Lifestyle factors and the metabolic syndrome in Schizophrenia: a cross-sectional study. Ann Gen Psychiatry. 2017 Feb 15;16:12. doi: 10.1186/s12991-017-0134-6. PMID: 28289436; PMCID: PMC5310063..
  2. Naderyan Fe'li S, Yassini Ardekani SM, Fallahzadeh H, Dehghani A. Metabolic syndrome and 10-year risk of cardiovascular events among schizophrenia inpatients treated with antipsychotics. Med J Islam Repub Iran. 2019 Sep 16;33:97. doi: 10.34171/mjiri.33.97. PMID: 31696091; PMCID: PMC6825382.
  3. Liu J, Fu L. Metabolic syndrome in patients with schizophrenia: Why should we care. Medicine (Baltimore). 2022 Aug 12;101(32):e29775. doi: 10.1097/MD.0000000000029775. PMID: 35960125; PMCID: PMC9371547.
  4. Gorobets LN, Bulanov VS, Vasilenko LM, Litvinov AV, Poliakovskaia TP. S.S. Korsakov Journal of Neurology and Psychiatry. 2012;112(9):90‑96 (in Russian).
  5. Mednova IA, Kornetova EG, IvanovаSA. Model for predicting metabolic syndrome in patients with paranoid schizophrenia. Siberian Herald of Psychiatry and Addiction Psychiatry. 2020;3(108):45-50. doi.org/10.26617/1810-3111-2020-3(108)-45-50 (in Russian).
  6. Kornetova EG, Kornetov AN, Mednova IA, Dubrovskaya VV, Boiko AS, Bokhan NA, Loonen AJM, Ivanova SA. Changes in body fat and related biochemical parameters associated with atypical antipsychotic drug treatment in schizophrenia patients with or without metabolic syndrome. Front Psychiatry. 2019 Nov 1;10:803. doi: 10.3389/fpsyt.2019.00803. PMID: 31736812; PMCID: PMC6838009.
  7. Butrova SA, Dzgoeva FKh. Visceral obesity is a key element of the metabolic syndrome. Obesity and Metabolism. 2004;1:10-16 (in Russian)
  8. Mednova IA, Chernonosov AA, Kornetova EG, Semke AV, Bokhan NA, Koval VV, Ivanova SA. Levels of acylcarnitines and branched-chain amino acids in antipsychotic-treated patients with paranoid schizophrenia with metabolic syndrome. Metabolites. 2022 Sep 9;12(9):850. doi: 10.3390/metabo12090850. PMID: 36144254; PMCID: PMC9504797.
  9. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017 Aug;11(8):215-225. doi: 10.1177/1753944717711379. Epub 2017 Jun 22. PMID: 28639538; PMCID: PMC5933580.
  10. Kumari R, Kumar S, Kant R. An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab Syndr. 2019 Jul-Aug;13(4):2409-2417. doi: 10.1016/j.dsx.2019.06.005. Epub 2019 Jun 8. PMID: 31405652.
  11. Mednova IA, Boiko AS, Kornetova EG, Parshukova DA, Semke AV, Bokhan NA, Loonen AJM, Ivanova SA. Adipocytokines and metabolic syndrome in patients with schizophrenia. Metabolites. 2020 Oct 14;10(10):410. doi: 10.3390/metabo10100410. PMID: 33066473; PMCID: PMC7602179.
  12. Pripachkina EA, Filev AP, Govorin AV, Tereshkov PP. Blood serum content of non-esterified fatty acids and glycerol in pregnant women with idiopathic ventricular extrasystole. Transbaikal Medical Bulletin. 2018;1:110-114 (in Russian).
  13. Yang X, Sun L, Zhao A, Hu X, Qing Y, Jiang J, Yang C, Xu T, Wang P, Liu J, Zhang J, He L, Jia W, Wan C. Serum fatty acid patterns in patients with schizophrenia: a targeted metabonomics study. Transl Psychiatry. 2017 Jul 25;7(7):e1176. doi: 10.1038/tp.2017.152. PMID: 28742081; PMCID: PMC5538128.
  14. Zhou X, Long T, Haas GL, Cai H, Yao JK. Reduced levels and disrupted biosynthesis pathways of plasma free fatty acids in first-episode antipsychotic-naïve schizophrenia patients. Front Neurosci. 2020 Jul 29;14:784. doi: 10.3389/fnins.2020.00784. PMID: 32848558; PMCID: PMC7403507.
  15. Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. J Exp Biol. 2018 Mar 7;221(Pt Suppl 1):jeb165381. doi: 10.1242/jeb.165381. PMID: 29514884.
  16. Scigliano G, Ronchetti G, Girotti F. Autonomic nervous system and risk factors for vascular disease. Effects of autonomic unbalance in schizophrenia and Parkinson's disease. Neurol Sci. 2008 Feb;29(1):15-21. doi: 10.1007/s10072-008-0853-1. Epub 2008 Apr 1. PMID: 18379735.
  17. Song X, Fan X, Song X, Zhang J, Zhang W, Li X, Gao J, Harrington A, Ziedonis D, Lv L. Elevated levels of adiponectin and other cytokines in drug naïve, first episode schizophrenia patients with normal weight. Schizophr Res. 2013 Oct;150(1):269-73. doi: 10.1016/j.schres.2013.07.044. Epub 2013 Aug 19. PMID: 23968860.
  18. Hönig GJ. Esquizofrenia y antipsicóticos: alteraciones metabólicas y efectividad terapéutica [Schizophrenia and antipsychotics: Metabolic alterations and therapeutic effectivity]. Vertex. 2018 Mar;29(138):139-147. Spanish. PMID: 30605187.
  19. Liu D, Luo S, Li Z. Multifaceted roles of adiponectin in rheumatoid arthritis. Int Immunopharmacol. 2015 Oct;28(2):1084-90. doi: 10.1016/j.intimp.2015.08.013. Epub 2015 Aug 22. PMID: 26307192.
  20. Scotece M, Conde J, López V, Lago F, Pino J, Gómez-Reino JJ, Gualillo O. Adiponectin and leptin: new targets in inflammation. Basic Clin Pharmacol Toxicol. 2014 Jan;114(1):97-102. doi: 10.1111/bcpt.12109. Epub 2013 Jul 26. PMID: 23834523.
  21. Toussirot É, Binda D, Gueugnon C, Dumoulin G. Adiponectin in autoimmune diseases. Curr Med Chem. 2012;19(32):5474-80. doi: 10.2174/092986712803833119. PMID: 22876925.
  22. Malashenkova IK, Krynsky SA, Ogurtsov DP, Mamoshina MV, Zakharova NV, Ushakov VL, Velichkovsky BM, Didkovsky NA. A role of the immune system in the pathogenesis of schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(12):72‑80. https://doi.org/10.17116/jnevro201811812172(in Russian).
  23. Zhou Q, Ge Q, Ding Y, Qu H, Wei H, Wu R, Yao L, Wei Q, Feng Z, Long J, Deng H. Relationship between serum adipsin and the first phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance. J Diabetes Investig. 2018 Sep;9(5):1128-1134. doi: 10.1111/jdi.12819. Epub 2018 Mar 22. PMID: 29432659; PMCID: PMC6123022.
  24. Wang CJ, Zhang ZJ, Sun J, Zhang XB, Mou XD, Zhang XR, Shang XF, Zhang TQ. Serum free Fatty acids and glucose metabolism, insulin resistance in schizophrenia with chronic antipsychotics. Biol Psychiatry. 2006 Dec 15;60(12):1309-13. doi: 10.1016/j.biopsych.2006.03.014. Epub 2006 May 2. PMID: 16650386.
  25. Ward KM, Yeoman L, McHugh C, Kraal AZ, Flowers SA, Rothberg AE, Karnovsky A, Das AK, Ellingrod VL, Stringer KA. Atypical Antipsychotic Exposure May Not Differentiate Metabolic Phenotypes of Patients with Schizophrenia. Pharmacotherapy. 2018 Jun;38(6):638-650. doi: 10.1002/phar.2119. PMID: 29722909; PMCID: PMC6014920.
  26. Isaeva AP, Gapparova KM, Chekhonina YuG, Lapik IA. Free fatty acids and obesity: state of the problem. Nutrition Issues. 2018;87(1):18-27.doi: 10.24411/0042-8833-2018-10002 (in Russian).
  27. Bartoli F, Crocamo C, Clerici M, Carrà G. Second-generation antipsychotics and adiponectin levels in schizophrenia: A comparative meta-analysis. Eur Neuropsychopharmacol. 2015 Oct;25(10):1767-74. doi: 10.1016/j.euroneuro.2015.06.011. Epub 2015 Jun 20. PMID: 26164075.
  28. Raposo NR, Ferreira AS, Gattaz WF. Body mass index increase, serum leptin, adiponectin, neuropeptide Y and lipid levels during treatment with olanzapine and haloperidol. Pharmacopsychiatry. 2011 Jul;44(5):169-72. doi: 10.1055/s-0031-1280793. Epub 2011 Jul 5. PMID: 21732272.
  29. Balõtšev R, Haring L, Koido K, Leping V, Kriisa K, Zilmer M, Vasar V, Piir A, Lang A, Vasar E. Antipsychotic treatment is associated with inflammatory and metabolic biomarkers alterations among first-episode psychosis patients: A 7-month follow-up study. Early Interv Psychiatry. 2019 Feb;13(1):101-109. doi: 10.1111/eip.12457. Epub 2017 Jul 18. PMID: 28719155.
  30. Potvin S, Zhornitsky S, Stip E. Antipsychotic-induced changes in blood levels of leptin in schizophrenia: a meta-analysis. Can J Psychiatry. 2015 Mar;60(3 Suppl 2):S26-34. PMID: 25886677; PMCID: PMC4418620.
  31. Wang Y, Zheng X, Xie X, Qian W, Zhang L, Ren W. Correlation of increased serum adipsin with increased cardiovascular risks in adult patients with growth hormone deficiency. Endocr Pract. 2019 May;25(5):446-453. doi: 10.4158/EP-2018-0541. Epub 2019 Jan 18. PMID: 30657359.
  32. Wang Y, Zheng X, Xie X, Qian W, Ren Z, Chen Y, Wu X, Liao K, Ren W. Body fat distribution and circulating adipsin are related to metabolic risks in adult patients with newly diagnosed growth hormone deficiency and improve after treatment. Biomed Pharmacother. 2020 Dec;132:110875. doi: 10.1016/j.biopha.2020.110875. Epub 2020 Nov 3. PMID: 33254428.
  33. VasilenkoMA, KirienkovaEV, SkuratovskayaDA, ZatolokinPA, MironyukNI, LitvinovaLS. The role of adipsin and leptin production in the formation of insulin resistance in patients with abdominal obesity. Reports of the Academy of Sciences. 2017;475(3):336-341. doi: 10.7868/S0869565217210228(in Russian).
  34. Plaisance EP, Grandjean PW, Judd RL, Jones KW, Taylor JK. The influence of sex, body composition, and nonesterified fatty acids on serum adipokine concentrations. Metabolism. 2009 Nov;58(11):1557-63. doi: 10.1016/j.metabol.2009.04.038. Epub 2009 Jul 9. PMID: 19592049; PMCID: PMC7134378.
  35. Punyadeera C, Zorenc AH, Koopman R, McAinch AJ, Smit E, Manders R, Keizer HA, Cameron-Smith D, van Loon LJ. The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle. Eur J Endocrinol. 2005 Mar;152(3):427-36. doi: 10.1530/eje.1.01872. PMID: 15757860.
  36. Lin Y, Peng Y, He S, Xu J, Shi Y, Su Y, Zhu C, Zhang X, Zhou R, Cui D. Serum IL-1ra, a novel biomarker predicting olanzapine-induced hypercholesterolemia and hyperleptinemia in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2018 Jun 8;84(Pt A):71-78. doi: 10.1016/j.pnpbp.2018.01.020. Epub 2018 Feb 1. PMID: 29410009.
  37. Aguilar Cordero MJ, González Jiménez E, Álvarez Ferré J, Padilla López CA, Rivas García F, Perona JS, García Aguilar R. Estudio de los niveles séricos de leptina, ceruloplasmina y lipoproteína (a) como indicadores del riesgo cardiovascular en una población de adolescentes de Granada (España) [Study of the serum levels of leptin, ceruloplasmin and lipoprotein (a) as indicators of cardiovascular risk in a population of adolescents in Granada (Spain)]. Nutr Hosp. 2011;26(5):1130-1133. doi: 10.1590/S0212-16112011000500032.
  38. der Merwe MT, Panz VR, Crowther NJ, Schlaphoff GP, Gray IP, Froguel P, Joffe BI, Lönnroth PN. Free fatty acids and insulin levels--relationship to leptin levels and body composition in various patient groups from South Africa. Int J Obes Relat Metab Disord. 1999 Sep;23(9):909-17. doi: 10.1038/sj.ijo.0800969. PMID: 10490795.
  39. Penninx BWJH, Lange SMM. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues Clin Neurosci. 2018 Mar;20(1):63-73. doi: 10.31887/DCNS.2018.20.1/bpenninx.PMID: 29946213; PMCID: PMC6016046.