Association analysis of haplotypes and regulatory potential of serotonin receptor genes in patients with schizophrenia and tardive dyskinesia

 

Authors

 

I.V. Pozhidaev

Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation

S.A. Ivanova

Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation

 

https://doi.org/10.26617/1810-3111-2024-1(122)-27-36

 

Journal: Siberian Herald of Psychiatry and Addiction Psychiatry. 2024; 1 (122):  27-36.

 

Abstract

Background. Tardive dyskinesia (TD) is a severe and potentially irreversible movement disorder that can develop as a side effect of long-term use of antipsychotic medications. Despite the fact that the pathophysiological mechanisms underlying antipsychotic-induced tardive dyskinesia are not yet sufficiently studied, literature data indicates the important role of genetic factors and the possible disruption of the dopaminergic and serotonergic systems. Changes in the genetic regulatory potential of serotonin receptors may play a role in the development of the antipsychotic-induced TD in patients with schizophrenia. Objective: to conduct a haplotype analysis of serotonin receptor genes, to determine the regulatory potential of the study genes in patients with schizophrenia and tardive dyskinesia. Material and Methods. The study was carried out on a sample of 449 patients aged 18-65 years suffering from schizophrenia and undergoing inpatient treatment at Mental Health Research Institute of Tomsk National Research Medical Center, Tomsk Clinical Psychiatric Hospital and Kemerovo Regional Clinical Psychiatric Hospital. Two groups were formed from them: patients meeting the criteria for the presence of tardive dyskinesia (n=121), patients without movement disorders (n=328). Dyskinesia was diagnosed using the standardized Abnormal Involuntary Movement Scale (AIMS). Genotyping 29 single-nucleotide polymorphic variants of 7 serotonin receptor genes was carried out using mass spectrometry on a Sequenom genetic analyzer. The regulatory potential of associations between single nucleotide polymorphisms and gene expression was assessed using the Genotype-Tissue Expression project portal. Results. The analysis demonstrated the association of the CTTTAACC haplotype of the HTR2A gene with the presence of tardive dyskinesia, that was a predisposing factor in the development of this side effect (OR=2.10, p=0.029). The detected association and annotation of the biological pathways of the studied genes confirmed the involvement of serotonergic receptor genes in the pathogenesis of medication-induced tardive dyskinesia under long-therm therapy with antipsychotics.

 

Keywords: schizophrenia, tardive dyskinesia, serotonin receptors, haplotype, haplotype analysis, quantitative trait locus.

 

Article (pdf)

 

Contacts

This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Materials 

For citation: Pozhidaev I.V., Ivanova S.A. Association analysis of haplotypes and regulatory potential of serotonin receptor genes in patients with schizophrenia andtardive dyskinesia. Siberian Herald of Psychiatry and Addiction Psychiatry.2024; 1 (122): 27-36. https://doi.org/10.26617/1810-3111-2024-1(122)-27-36

REFERENCES

  1. Correll CU, Kane JM, Citrome LL. Epidemiology, prevention, and assessment of tardive dyskinesia and advances in treatment. J Clin Psychiatry. 2017 Sep/Oct;78(8):1136-1147. doi: 10.4088/JCP.tv17016ah4c. PMID: 29022654.
  2. Carbon M, Hsieh CH, Kane JM, Correll CU. Tardive dyskinesia prevalence in the period of second-generation antipsychotic use: a meta-analysis. J Clin Psychiatry. 2017 Mar;78(3):e264-e278. doi: 10.4088/JCP.16r10832. PMID: 28146614.
  3. Kornetova EG, Boiko AS, Borodyuk YuN, Semke AV. Tardive dyskinesia in patients with schizophrenia: clinical features and risk factors. Tomsk: Publishing House “New Printing Technologies”, 2014:106 (in Russian).
  4. Rekhi G, Tay J, Lee J. Impact of drug-induced Parkinsonism and tardive dyskinesia on health-related quality of life in schizophrenia. J Psychopharmacol. 2022 Feb;36(2):183-190. doi: 10.1177/02698811211055812. Epub 2022 Jan 3. PMID: 34979813.
  5. Takeuchi H, Mori Y, Tsutsumi Y. Pathophysiology, prognosis and treatment of tardive dyskinesia. Ther Adv Psychopharmacol. 2022 Oct 21;12:20451253221117313. doi: 10.1177/20451253221117313. PMID: 36312846; PMCID: PMC9597038.
  6. Kornetova EG, Semke AV, Dmitrieva EG, Borodyuk YuN, Boiko AS. Clinical and social risk factors for tardive dyskinesia in patients with schizophrenia during treatment with antipsychotics. Bulletin of Siberian Medicine. 2015;14(1):32-39 (in Russian).
  7. Loonen AJ, Ivanova SA. New insights into the mechanism of drug-induced dyskinesia. CNS Spectr. 2013 Feb;18(1):15-20. doi: 10.1017/s1092852912000752. PMID: 23593652.
  8. Caroff SN. A new era in the diagnosis and treatment of tardive dyskinesia. CNS Spectr. 2022 Oct 24:4-14. doi: 10.1017/S1092852922000992. Epub ahead of print. PMID: 36278439.
  9. Veiman EE, Shneider NA, Neznanov NG, Nasyrova RF. Pathophysiological mechanisms underlying antipsychotic-induced tardive dyskinesia. Bulletin of Siberian Medicine. 2019;18(4):169-184 doi: 10.20538/1682-0363-2019-4-169-184 (in Russian).
  10. Ivanova SA, Fedorenko OYu, Bokhan NA, Loonen A. Pharmacogenetics of tardive dyskinesia. Tomsk: Publishing House “New Printing Technologies”, 2015:120 (in Russian).
  11. Müller DJ, Chowdhury NI, Zai CC. The pharmacogenetics of antipsychotic-induced adverse events. Curr Opin Psychiatry. 2013 Mar;26(2):144-50. doi: 10.1097/YCO.0b013e32835dc9da. PMID: 23370274.
  12. Boiko AS, Ivanova SA, Pozhidaev IV, Freidin MB, Osmanova DZ, Fedorenko OY, Semke AV, Bokhan NA, Wilffert B, Loonen AJM. Pharmacogenetics of tardive dyskinesia in schizophrenia: the role of chrm1 and chrm2 muscarinic receptors. World J Biol Psychiatry. 2020 Jan;21(1):72-77. doi: 10.1080/15622975.2018.1548780. Epub 2019 Jan 9. PMID: 30623717.
  13. Levchenko A, Kanapin A, Samsonova A, Fedorenko OY, Kornetova EG, Nurgaliev T, Mazo GE, Semke AV, Kibitov AO, Bokhan NA, Gainetdinov RR, Ivanova SA. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Mar 8;105:110134. doi: 10.1016/j.pnpbp.2020.110134. Epub 2020 Oct 13. PMID: 33065217.
  14. Lanning RK, Zai CC, Müller DJ. Pharmacogenetics of tardive dyskinesia: an updated review of the literature. Pharmacogenomics. 2016 Aug;17(12):1339-51. doi: 10.2217/pgs.16.26. Epub 2016 Jul 29. PMID: 27469238.
  15. Loonen AJ, Wilffert B, Ivanova SA. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics. 2019 Nov;20(17):1199-1223. doi: 10.2217/pgs-2019-0100. Epub 2019 Nov 5. PMID: 31686592.
  16. Schneider NA, Vaiman EE, Neznanov NG, Nasyrova RF. Pharmacogenetics of antipsychotic-induced extrapyramidal disorders. St. Petersburg: DEAN Publishing House, 2022. 288 (in Russian).
  17. Fedorenko OYu, Ivanova SA, Kornetova EG. The role of gene polymorphism of the dopamine and glutamate systems in the clinical heterogeneity of schizophrenia and the development of antipsychotic-induced side effects. Siberian Herald of Psychiatry and Addiction Psychiatry. 2023; 1 (118): 5-13. https://doi.org/10.26617/1810-3111-2023-1(118)-5-13(in Russian).
  18. Veiman EE, Shneider NA, Neznanov NG, Nasyrova RF. Candidate genes involved in the development of antipsychotic-induced tardive dyskinesia in patients with schizophrenia. Neuromuscular Diseases. 2020;10(3):10-26. https://doi.org/10. 17650/2222-8721-2020-10-3-10-26(in Russian).
  19. FedorenkoOYu, IvanovaSA, SemkeAV, BokhanNA. Tardive dyskinesia: advances in modern pharmacogenetics. Modern Therapy of Mental Disorders. 2017. No. 1. P. 22-28 (in Russian).
  20. Hsieh CJ, Chen YC, Lai MS, Hong CJ, Chien KL. Genetic variability in serotonin receptor and transporter genes may influence risk for tardive dyskinesia in chronic schizophrenia. Psychiatry Res. 2011 Jun 30;188(1):175-6. doi: 10.1016/j.psychres. 2010.10.006. Epub 2010 Nov 4. PMID: 21055833.
  21. Pozhidaev IV, Paderina DZ, Fedorenko OY, Kornetova EG, Semke AV, Loonen AJM, Bokhan NA, Wilffert B, Ivanova SA. 5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Front Mol Neurosci. 2020 Apr 24;13:63. doi: 10.3389/fnmol.2020.00063. PMID: 32390801; PMCID: PMC7193905.
  22. Tsermpini EE, Redenšek S, Dolžan V. Genetic factors associated with tardive dyskinesia: from pre-clinical models to clinical studies. Front Pharmacol. 2022 Jan 24;12:834129. doi: 10.3389/fphar. 2021.834129. PMID: 35140610; PMCID: PMC8819690.
  23. Loonen AJM, Ivanova SA. Role of 5-HT2C receptors in dyskinesia. International Journal of Pharmacy and Pharmaceutical Sciences. 2016;8(1):5-10.
  24. Schooler NR, Kane JM. Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry. 1982 Apr;39(4):486-7. doi: 10.1001/archpsyc.1982. 04290040080014. PMID: 6121550.