КЛИНИЧЕСКАЯ НАРКОЛОГИЯ

УДК 616-092.6:616.89:613.81:612.017.1:616-002.2:616.8-085.2/.3

Для цитирования: Епимахова Е.В., Воеводин И.В., Ветлугина Т.П., Кисель Н.И., Прокопьева В.Д., Бедарев Р.И., Аболонин А.Ф., Бохан Н.А. Аминодигидрофталазиндион натрия в комплексной терапии пациентов с алкогольной зависимостью. Сибирский вестник психиатрии и наркологии. 2025. № 3 (128). С. 60-68. https://doi.org/10.26617/1810-3111-2025-3(128)-60-68

Аминодигидрофталазиндион натрия в комплексной терапии пациентов с алкогольной зависимостью

Епимахова Е.В.¹, Воеводин И.В.¹, Ветлугина Т.П.¹, Кисель Н.И.¹, Прокопьева В.Д.¹, Бедарев Р.И.¹, Аболонин А.Ф.¹, Бохан Н.А.^{1, 2}

РЕЗЮМЕ

Актуальность. Хроническое употребление алкоголя снижает количество клеток врожденного иммунитета (NK-клеток), ослабляет иммунную защиту организма, ухудшает эффективность лечения алкогольной зависимости (АЗ). Рациональным и обоснованным является включение в комплекс терапии препаратов, оптимизирующих иммунную регуляцию. Цель: изучить влияние на NK-клетки и клинические показатели больных алкогольной зависимостью адъювантной терапии с включением в реабилитационный комплекс пациентов аминодигидрофталазиндиона натрия. Материалы и методы. На базе отделения аддиктивных состояний НИИ психического здоровья Томского НИМЦ обследовали пациентов (n=65) мужского пола с диагнозом по МКБ-10 «Психические и поведенческие расстройства в результате употребления алкоголя (синдром зависимости – F10.21 и синдром отмены – F10.30)», со средней длительностью заболевания 15.0 ± 9.5 года. Пациентам основной группы (n=40) на 2-3-й день лечения дополнительно к стандартной терапии назначали иммуномодулятор аминодигидрофталазиндион натрия (галавит®) в дозе 100 мг/сут в течение 10 дней. Пациенты группы сравнения (n=25) получали стандартную терапию. Клинико-биологические исследования проведены в динамике: 1-я точка – на 2-3-й день лечения, 2-я точка – через 14-17 дней терапии. Фенотипирование NK-клеток осуществляли в цельной крови на проточном цитометре BD Facs Calibur. Для оценки клинического состояния пациентов применяли Госпитальную шкалу тревоги и депрессии HADS, Квантифицированную шкалу комплексной оценки психопатологических расстройств в ремиссии (КШОПРР), Пенсильванскую шкалу влечения к алкоголю PACS. Результаты. В 1-й точке у пациентов обеих групп установлено статистически значимое снижение количества NK-клеток по отношению к контролю (25 здоровых мужчин). В ходе терапии в основной группе пациентов отмечено повышение количества NK-клеток во 2-й точке по сравнению с 1-й точкой. Общий клинически эффект оказался более выраженным в основной группе, при этом наиболее значимой была нормализация показателя тревоги. Заключение. Комплексное лечение с включением аминодигидрофталазиндиона натрия увеличивает количество NK-клеток в крови больных АЗ и повышает качество формирования ремиссии, в том числе за счет редукции тревожной симптоматики, а также улучшения общего состояния пациентов.

Ключевые слова: алкогольная зависимость, алкоголизм, врожденный иммунитет, NK-клетки, аминодигидрофталазиндион натрия, галавит®, постабстинентное состояние, ремиссия.

ВВЕДЕНИЕ

Алкогольная зависимость (алкоголизм, далее – A3) представляет собой одну из наиболее значимых медико-социальных проблем современного общества, что обусловлено не только высокой распространенностью, но и тяжелыми послед-

ствиями, связанными с хронической интоксикацией этанолом. Для достижения наилучшего результата в лечении пациентов с АЗ продолжается поиск новых лекарственных средств на основе клинико-биологического подхода.

¹ НИИ психического здоровья, Томский национальный исследовательский медицинский центр Российской академии наук Россия, 634014, Томск, ул. Алеутская, 4

² ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России Россия, 634050, Томск, Московский тракт, 2

Важным звеном патогенеза АЗ являются дисбаланс иммунной системы и нарушение нейроиммунного взаимодействия [1, 2, 3]. Полученные нами ранее данные подтверждают изменение иммунного профиля у пациентов с АЗ по сравнению со здоровыми лицами, наиболее значимом является дисбаланс клеток врожденного и адаптивного иммунитета с увеличением общего числа Тлимфоцитов и снижением количества NK-клеток [4]. Естественные клетки-киллеры (NK-клетки), являясь важнейшим компонентом врожденной иммунной системы, выполняют разнообразные биологические функции, в том числе распознавание и уничтожение инфицированных и трансформированных клеток. Хроническое употребление алкоголя снижает количество периферических NK-клеток и их цитолитическую активность, ослабляет иммунную защиту организма, способствуя формированию сопутствующей соматической патологии [5]. В целом иммунный дисбаланс вносит негативный вклад в течение заболевания и снижает эффективность лечения АЗ.

Разработка новых подходов к лечению АЗ остается актуальной проблемой наркологии. Результаты клинико-биологических исследований обосновывают целесообразность адъювантной (вспомогательной) терапии при алкоголизме с включением в реабилитационный комплекс дополнительных средств, влияние которых направлено на молекулярные мишени токсического действия этанола и его метаболитов и на коррекцию алкоголь-обусловленных нарушений [6, 7].

Одним из таких лекарственных средств является химически синтезированный аминодигидрофталазиндион натрия (aminodihydrophtalazinedione sodium), торговое название – галавит® относящийся (Galavit), клиникофармакологической и фармакотерапевтической группе: иммуномодулирующий и противовоспалительный препарат. В основном препарат применяется в комплексной терапии острых и хронических воспалительных заболеваний различного генеза, возникающих на фоне вторичной иммунной недостаточности [8, 9]. Впервые галавит в комплексе лечения больных алкоголизмом был использован нами ранее, обнаружен его положительный терапевтический эффект в отношении астенической симптоматики в структуре соматовегетативных проявлений постабстинетного состояния [10].

ЦЕЛЬ ИССЛЕДОВАНИЯ

Изучить влияние на NK-клетки и клинические показатели больных алкогольной зависимостью адъювантной терапии с включением в реабилитационный комплекс пациентов аминодигидрофталазиндиона натрия.

МАТЕРИАЛЫ И МЕТОДЫ

В исследование включены пациенты (n=65) мужского пола в возрасте от 32 до 60 лет (средний возраст 48,1±7,4 года), поступившие на лечение в клинику НИИ психического здоровья Томского НИМЦ с диагнозом по МКБ-10: «Психические и поведенческие расстройства в результате употребления алкоголя (синдром зависимости — F10.21 и синдром отмены — F10.30)», со средней длительностью заболевания 15,0±9,5 года.

Среди обследованных преобладали (47,7%, n=31) лица со средним специальным образованием; пациенты с высшим образованием составили 24,6% (n=16), с общим средним образованием -16,9% (n=11), с незаконченным высшим – 10,8% (n=7). По роду деятельности на момент поступления преобладали (49,2%, n=32) лица, работающие не по специальности. Трудоустроенные по специальности составили 27,7% (n=18), нетрудоустроенные, не достигшие пенсионного возраста – 18,5% (n=12), пенсионеры – 4,6% (n=3). В зарегистрированном браке состояли большинство обследованных (53,8%, n=35), в разводе -30.8% (n=20), в незарегистрированном браке – 10,8% (n=7), вдовцы составили 3,1% обследованных (n=2), 1 пациент никогда не состоял в браке.

Пациенты поступали в стационар в состоянии алкогольного абстинентного синдрома с различной степенью выраженности нейровегетативных, аффективных, диссомнических, астенических расстройств. У всех пациентов выявлена та или иная сопутствующая соматическая патология: нарушение функции печени, артериальная гипертензия, ишемическая болезнь сердца, язвенные поражения желудка или двенадцатиперстной кишки и другие заболевания; в большинстве (85%) случаев установлена сочетанная патология двух-трех систем организма (ЖКТ, сердечно-сосудистой, мочеполовой, дыхательной систем).

С первого дня госпитализации пациентам проводили стандартную терапию, включающую алкогольную детоксикацию. Пациентам основной группы (n=40) после алкогольной детоксикации и редуцирования острых проявлений алкогольного абстинентного синдрома, как правило, на 2-3-й день лечения дополнительно к стандартной терапии назначали галавит® (ООО «СЭЛВИМ») внутримышечно, в дозе 100 мг/сут в течение 10 дней. Пациенты группы сравнения (n=25) получали стандартную терапию. Группы не имели статистически значимых различий по возрасту и длительности заболевания, уровню образования, роду деятельности и семейному положению.

Исследование проводили в двух контрольных точках: 1-я точка — после редуцирования острых проявлений алкогольного абстинентного синдрома на 2-3-й день лечения (ранний период постабсти-

нентного состояния); 2-я точка — через 14-17 дней терапии (отдаленный период постабстинентного состояния и начало формирования терапевтической ремиссии).

Взятие крови для биологических исследований осуществляли из локтевой вены утром натощак с использованием стерильной системы однократного применения Vacutainer с антикоагулянтом EDTA для проведения фенотипирования лимфоцитов. Контрольную группу (контроль) при биологических исследованиях составили 25 условно здоровых мужчин, не состоящих на диспансерном учете, на момент обследования не имеющих хронических соматических заболеваний в стадии обострения и признаков перенесенных острых инфекций.

Фенотипирование NK-клеток с поверхностными рецепторами CD3-CD16+CD56+ осуществляли в цельной периферической крови на проточном цитометре BD Facs Calibur (Becton Dickinson, CША) с использованием набора реагентов BD MultitestTM IMK Kit. Цитометрию проводили согласно инструкции к цитометру и набору реагентов. Подсчет процентного соотношения положительных клеток в общей популяции лимфоцитов осуществлялся автоматически с помощью программного обеспечения BD Cell Quest.

Для оценки тревожной и депрессивной симптоматики применяли Госпитальную шкалу тревоги и депрессии (HADS), для определения наличия и выраженности психопатологических нарушений – Квантифицированную шкалу комплексной оценки психопатологических расстройств в ремиссии (КШОПРР), для самооценки пациентом тяги/влечения к спиртному – Пенсильванскую шкалу влечения к алкоголю (PACS).

Статистическую обработку данных осуществляли с использованием пакета программ SPSS для Windows, версия 23.0. Описательная статистика представлена медианой (Ме) и межквартильным интервалом (LQ–UQ). Межгрупповой анализ количественных данных проводился с использованием критерия Манна-Уитни для независимых выборок, тест Вилкоксона применяли для зависимых выборок, критерий хи-квадрат – для оценки качественных данных. Статистически значимыми различия считали при р<0,05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Биологические исследования (фенотипирование NK-клеток) проведены у 57 пациентов (32 человека основной группы и 25 – группы сравнения) и у 25 условно здоровых мужчин (контроль).

В общей (основной и сравнения) группе пациентов в 1-й точке установлено статистически значимое (p<0,001) по отношению к контролю снижение количества NK-клеток (табл. 1).

Результаты цитометрии популяций клеток врожденного иммунитета в динамике терапии у пациентов с АЗ основной группы и группы сравнения приведены в таблице 2.

В обеих группах больных в 1-й точке исследования содержание NK-клеток оказалось ниже по отношению к контролю. После курса терапии статистически значимое повышение количества NK-клеток по сравнению с 1-й точкой отмечено только в основной группе (p=0,017), при этом количество NK-клеток во 2-й точке не имело отличий от контрольной группы (рк=0,078). В группе сравнения во 2-й точке наблюдения количество NK-клеток оставалось ниже значений в контрольной группе (рк=0,031). В то же время значения медианы количества клеток после терапии в обеих группах были близки (12% и 11%).

Таблица 1. Содержание NK-клеток в периферической крови в общей группе больных алкогольной зависимостью в 1-й точке исследования

Показатель	Пациенты	Контроль	р-значение между группами
NK-клетки			
CD3 ⁻ CD16 ⁺ CD56 ⁺ , %	9,00 (6,00; 11,00)	15,00 (12,00-18,00)	p<0,001

Таблица 2. Содержание NK-клеток в периферической крови больных алкогольной зависимостью в динамике терапии

Показатель	Основная группа		Группа сравнения	
	1-я точка	2-я точка	1-я точка	2-я точка
	8,00	12,00	10,00	11,00
NK-клетки	[6,00; 11,00]	[9,00; 16,50]	[7,00; 15,00]	[6,00; 15,00]
CD3 ⁻ CD16 ⁺ CD56 ⁺ ,%	рк<0,001	рк=0,078	рк=0,011	рк=0,031
		p=0,017		p=0,857

 Π р и м е ч а н и е. Уровень статистической значимости различий: по отношению к контрольной группе – p_{κ} , между 1-й и 2-й точками исследования – р.

Принимая во внимание полученные данные, на следующем этапе работы из общей группы больных были отобраны лица, у которых исходное (1-я точка) содержание NK-клеток составляло 7% (в 2 раза ниже значения медианы в контрольной группе — 15%) или менее 7%. Такой подход учитывает принадлежность лекарственного пре-

парата галавит® к клинико-фармакологической группе «иммуномодулирующий препарат» и позволяет более детально оценить эффективность проводимой комплексной терапии АЗ. Низкие значения NK-клеток выявлены у 21 пациента, результаты цитометрического анализа представлены в таблице 3.

Таблица 3. Динамика содержания NK-клеток в периферической крови больных A3 в зависимости от индивидуальных значений в 1-й точке исследования (ниже 7%)

Метод терапии	NK-клетки, % Me (LQ-UQ)			
	1-я точка	2-я точка	р-значение между	
			группами	
Комплексная терапия (основная группа), n=10	6,00 [6,00; 6,00]	11,00 [7,00; 11,00]	0,021	
Стандартная терапия (группа сравнения), n=11	6,00 [3,00; 6,00]	6,00 [3,50; 8,00]	0,083	

Установлено, что стандартное лечение не оказывало значимого воздействия на изначально низкое число периферических NK-клеток у пациентов, тогда как комплексная терапия с включением галавита способствовала положительной динамике клеток врожденного иммунитета, их количество статистически (p=0,021) значимо возросло во 2-й точке исследования по сравнению с 1-й точкой.

В ряде исследований при применении галавита® в комплексе терапии различных инфекционных заболеваний отмечено, что механизм его действия обусловлен способностью избирательно регулировать компоненты врожденного и адаптивного иммунитета, повышая или снижая их уровень и функциональную активность в зависимости от исходных значений [8, 11].

Естественные клетки-киллеры, составляя передовую систему защиты от опухолей и инфекций, посредством секреции цитокинов выполняют разнообразные биологические функции, они необходимы для оптимального иммунного ответа и поддержания гомеостаза [12]. Нарушение функции NK-клеток в результате длительного потребления алкоголя оказывает дальнейшее негативное влияние на другие компоненты врожденной иммунной системы, приводит к ослаблению иммунной защиты от патогенов с последующим повреждением органов-мишеней, и поиск путей оптимизации иммунной регуляции имеет большое значение для разработки новых средств терапии алкоголизма [13, 14]. Выявленные в собственном исследовании эффекты свидетельствуют о потенциале применения галавита® для коррекции нарушений врожденного иммунитета, ассоциированных с АЗ.

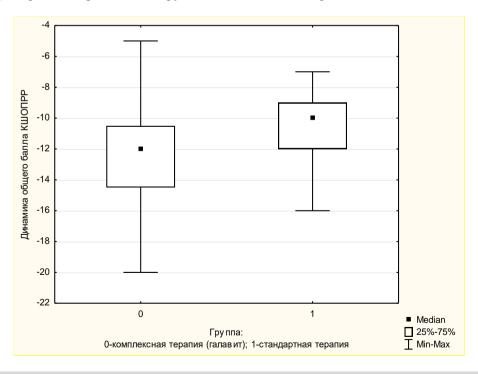
При клиническом обследовании в 1-й точке у пациентов были выявлены следующие показатели. В структуре постабстинентного состояния средний балл тревоги составил 8 [5; 11], средний балл депрессии – 5 [4; 9]. Качественно субклиническая тревога выявлялась у 23,1% пациентов, клиническая тревога – у 29,2%, депрессия – соответственно в 16,9% и 20,0% случаев. Средний балл

КШОПРР составил 15 [13; 17]; при этом в большинстве (90,8%) случаев установлен средний уровень психопатологических расстройств, в 9,2% случаев - легкий. Средний балл шкалы PACS составил 17 [10; 23]. Слабо выраженный уровень влечения к алкоголю отмечался у 16,9% пациентов, средней степени выраженности – у 41,5%, влечение высокой интенсивности - у 21,5%. Статистически значимых межгрупповых различий в отношении клинико-психопатологической симптоматики (тревожно-депрессивные проявления) в 1-й точке не отмечалось ни по одному из симптомов (сопоставимость показателей тревоги при р=0,5665, депрессии при р=0,2659, показателя КШОПРР при p=0,2747, показателя PACS при p=0.3663).

Во 2-й точке исследования был оценен эффект проведенного вмешательства. Нормализация всех четырех исследуемых клинических показателей у пациентов с АЗ рассматривалась как высокая эффективность формирования ремиссии. Под сниженным эффектом вмешательства подразумевалось сохранение ненормативного значения хотя бы одного из четырех показателей во 2-й точке: тревоги и/или депрессии более 7 баллов по HADS, выраженности психопатологических нарушений по КШОПРР более 5 баллов, самооценки ги/влечения к алкоголю по PACS более 7 баллов. Сниженная эффективность формирования ремиссии обнаружена у 30,0% пациентов основной группы и 44,0% пациентов группы сравнения (табл. 4). Таким образом, общий эффект вмешательства оказался выше в основной группе, однако выявленная тенденция не достигает статистической значимости (χ^2 =3,18; df=3; p>0,05).

Значимым результатом применения комплексной терапии с включением препарата галавит® у пациентов с A3 в постабстинентном состоянии оказалась нормализация показателя тревоги по шкале HADS, что отражено на рисунке 1 и подтверждается статистической значимостью межгрупповых различий (χ^2 =3,95; df=1; p=0,046).

Таблица 4. Общий эффект вмешательства в соответствии с редуцированием до нормативных значений показателей тревоги и депрессии (HADS), общего балла (КШОПРР) и влечения к алкоголю (PACS)


Общий эффект во 2-й (контрольной) точке	Комплексная терапия (n=40)		Стандартная терапия (n=25)	
	абс.	%	абс.	%
Нормализация всех показателей	28	70,0	14	56,0
Ненормативен 1 показатель	11	27,5	8	32,0
Ненормативны 2 показателя	1	2,5	2	8,0
Ненормативны 3 показателя	0	0	1	4,0
Всего	40	100,0	25	100,0

Редуцирование тревожной симптоматики в группах пациентов комплексной и стандартной терапии

Рисунок 1. Эффективность вмешательства в зависимости от выраженности тревожной симптоматики (шкала HADS)

Статистически значимой динамической тенденцией стало более выраженное снижение балла Квантифицированной шкалы оценки психопатологических расстройств в ремиссии в группе пациентов, принимающих комплексную терапию с включением галавита, что представлено на рисунке 2 (статистическая значимость различий при Z=-2,4743; p=0,013).

Р и с у н о к 2. Эффект вмешательства по показателям динамики среднего балла КШОПРР

Таким образом, повышение количества клеток врожденного иммунитета при использовании адъювантной терапии сопровождалось позитивным клиническим эффектом, что обусловлено нейроиммунной взаимосвязью и широко изучаемыми механизмами психонейроиммуномодуляции [15, 16]. В пилотном рандомизированном исследовании в ходе психотерапии пациентов с АЗ (адаптация к стрессовым ситуациям и снижение их негативного влияния для предотвращения рецидивов после выписки) установлена связь между психологическими механизмами и врожденным иммунитетом, выявлено увеличение количества NK-клеток, белков стресса и позитивные изменения в профиле MMPI-2, а также снижение выраженности депрессии, тревожности и импульсивности [17].

ЗАКЛЮЧЕНИЕ

Проведенное исследование продемонстрировало иммуномодулирующий эффект препарата галавит® в отношении врожденного иммунитета за счет нормализации количества периферических NK-клеток (CD3⁻CD16⁺CD56⁺-фенотипа) в динамике комплексной терапии больных АЗ. Применение галавита® в комплексной терапии постабстинентного состояния у пациентов с АЗ повышает качество формирования ремиссии, в частности за счет редукции тревожной симптоматики, а также улучшения общего состояния пациентов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнялась в рамках финансирования темы ПНИ № 123041900008-8 НИИ психического здоровья Томского ТИМЦ.

. СООТВЕТСТВИЕ ПРИНЦИПАМ ЭТИКИ

Исследование осуществлялось в соответствии с «Этическими принципами проведения научных медицинских исследований с участием человека» и «Правилами клинической практики в Российской Федерации». Все пациенты подписали информированное согласие на участие в исследовании. Исследование одобрено локальным этическим комитетом НИИ психического здоровья Томского НИМЦ (протокол № 157 от 18.11.2022 г.).

ЛИТЕРАТУРА/REFERENCES

- Pasala S, Barr T, Messaoudi I. Impact of alcohol abuse on the adaptive immune system. Alcohol Res. 2015;37(2):185-97. PMID: 26695744; PMCID: PMC4590616.
- Гамалея Н.Б., Ульянова Л.И., Берзина А.Г., Климова Т.А. Нарушения иммунитета при интоксикации алкоголем и наркотиками. Вопросы наркологии. 2018. № 2 (162). С. 128-154. Gamaleya NB, Ulyanova LI, Berzina AG, Klimova TA. Immune disorders in alcohol and drug intoxi-

- cation. Journal of Addiction Problems. 2018;2(162):128-154 (in Russian).
- Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav. 2019 Feb;177:34-60. https://doi.org/10.1016/j.pbb.2018.12.007. Epub 2018 Dec 24. PMID: 30590091; PMCID: PMC6946054.
- 4. Ветлугина Т.П., Епимахова Е.В., Прокопьева В.Д., Никитина В.Б., Мандель А.И., Бохан Н.А. Фенотипическая характеристика лимфоцитов периферической крови больных алкоголизмом в динамике постабстинентного состояния. Психиатрия. 2024. Т. 22, № 5. С. 49-58. Vetlugina TP, Epimakhova EV, Prokopieva VD, Nikitina VB, Mandel AI, Bokhan NA. Phenotypic characteristics of peripheral blood lymphocytes in patients with alcohol dependence in the dynamics of the post-abstinence state. Psychiatry (Moscow). 2024;22(5):49-58. https://doi.org/10.30629/2618-6667-2024-22-5-49-58 (in Russian).
- Zhang F, Little A, Zhang H. Chronic alcohol consumption inhibits peripheral NK cell development and maturation by decreasing the availability of IL-15. J Leukoc Biol. 2017 Apr;101(4):1015-1027. https://doi.org/10.1189/jlb.1A0716-298RR. Epub 2016 Nov 11. PMID: 27837016; PMCID: PMC5346179.
- 6. Ветлугина Т.П., Прокопьева В.Д., Бохан Н.А. Биологические основы адыовантной терапии алкоголизма. Томск: Изд-во Томского государственного университета, 2023. 208 с. Vetlugina TP, Prokopieva VD, Bokhan NA. Biological bases of adjuvant therapy of alcoholism. Tomsk: Tomsk State University, 2023:208 (in Russian).
- Prokopieva VD, Vetlugina TP, Epimakhova EV, Boiko AS, Bokhan NA. Association of peripheral markers of oxidative stress with clinical parameters and inflammatory factors in alcoholic patients. Biochemistry (Mosc). 2024 Nov;89(11):1904-1910. https://doi.org/10.1134/S000629792411004X. PMID: 39647819.
- 8. Попова И.А. Галавит®: современный взгляд на терапию инфекционно-воспалительных заболеваний дыхательных путей. Фармакология & Фармакотерапия. 2020. № 1. С. 26-33. Popova IA. Galavit®: a modern view on the therapy of infectious and inflammatory diseases of the respiratory tract. Pharmacology & Pharmacotherapy. 2020;1:26-33. https://doi.org/10.46393/2713-2129_2020_1_26 (in Russian).
- 9. Росаткевич А.Г. Опыт применения иммуномодулятора Галавит® в профилактике частых эпизодов острой респираторной вирусной инфекции после перенесенного COVID-19. Consilium Medicum. 2023. Т. 25, № 3. С. 173-178. Rosatkevich AG. Experience of using the immunomodulator Galavit® in the prevention of frequent episodes of acute respiratory viral infection after COVID-19. Consilium Medicum. 2023;25(3):173-178.

- https://doi.org/10.26442/20751753.2023.3.202173 (in Russian).
- 10. Ветлугина Т.П., Бохан Н.А., Ляшенко Г.П., Мандель А.И., Семке В.Я. ГУ НИИПЗ ТНЦ СО РАМН. Способ лечения постабстинентных состояний при алкоголизме. Патент № 2 304 970 С2. Заявл. 06.10.2005. Опубл. 27.08.2007. Бюл. № 24. Vetlugina TP, Bokhan NA, Lyashenko GP, Mandel AI, Semke VYa. State Institution Research Institute of Mental Health of the Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Medical Sciences. Method for the Treatment of Post-Abstinence States in Alcoholism. Patent No. 2 304 970 C2. Claimed 06.10.2005. Published 27.08.2007. Bulletin No. 24 (in Russian).
- 11. Свистушкин В., Никифорова Г., Леонова М., Покозий И. Влияние иммуномодулятора Галавит® на течение хронического рецидивирующего тонзиллита. Врач. 2016. № 8. С. 20-25. Svistushkin V, Nikiforova G, Leonova M, Pokoziy I. Effect of the immunomodulator Galavit® on the course of chronic recurrent tonsillitis. Doctor. 2016;8:20-25 (in Russian).
- 12. Mandal A, Viswanathan C. Natural killer cells: In health and disease. Hematol Oncol Stem Cell Ther. 2015 Jun;8(2):47-55. https://doi.org/10.1016/j.hemonc.2014.11.006. Epub 2014 Dec 27. PMID: 25571788.
- Marrero I, Maricic I, Feldstein AE, Loomba R, Schnabl B, Rivera-Nieves J, Eckmann L, Kumar V. Complex network of NKT Cell subsets controls immune homeostasis in liver and gut. Front Immunol. 2018 Sep 11;9:2082. https://doi.org/10.3389/fimmu.2018.02082. PMID: 30254647; PMCID: PMC6141878.
- 14. Ruiz-Cortes K, Villageliu DN, Samuelson DR. Innate lymphocytes: Role in alcohol-induced immune dys-

- function. Front Immunol. 2022 Aug 29;13:934617. https://doi.org/10.3389/fimmu.2022.934617. PMID: 36105802; PMCID: PMC9464604.
- 15. Идова Г.В., Альперина Е.Л., Жанаева С.Я., Геворгян М.М. Нейроиммунные механизмы нейродегенеративных заболеваний: роль цитокинов и толл-подобных рецепторов. Сибирский вестник психиатрии и наркологии. 2018. № 2 (99). С. 99-104. Idova GV, Alperina EL, Zhanaeva SYa, Gevorgyan MM. Neuroimmune mechanisms of neurodegenerative disorders: role of cytokines and toll-like receptors. Siberian Herald of Psychiatry and Addiction Psychiatry. 2018;2 (99):99-104. https://doi.org/10.26617/1810-3111-2018-2(99)-99-104 (in Russian).
- Маркова Е.В. Иммунокомпетентные клетки и регуляция поведенческих реакций в норме и патологии. Красноярск: Научно-инновационный центр, 2021. 184 с. Markova EV. Immunocompetent cells and regulation of behavioral reactions in norm and pathology. Krasnoyarsk: Scientific and Innovation Center, 2021:184. https://doi.org/10.12731/978-5-907208-67-4 (in Russian).
- 17. Kang SJ, Pei CZ, Lee DH, Ha JE, Baek KH. A pilot randomized clinical trial of biomedical link with mental health in art therapy intervention programs for alcohol use disorder: Changes in NK cells, addiction biomarkers, electroencephalography, and MMPI-2 profiles. PLoS One. 2023 May 5;18(5):e0284344. https://doi.org/10.1371/journal.pone.0284344. PMID: 37146054; PMCID: PMC10162529.

Поступила в редакцию 30.04.2025 Утверждена к печати 15.09.2025

Епимахова Елена Викторовна, к.б.н., научный сотрудник отделения аддиктивных состояний НИИ психического здоровья Томского НИМЦ. SPIN-код РИНЦ 7021-5740. ResearcherID J-3122-2017. Author ID Scopus 57216672615. ORCID iD 0000-0002-9304-4496. Author ID РИНЦ 131438.

Воеводин Иван Валерьевич, д.м.н., ведущий научный сотрудник отделения аддиктивных состояний НИИ психического здоровья Томского НИМЦ. SPIN-код РИНЦ 5675-7498. ResearcherID J-2399-2017. Author ID Scopus 56299783700. ORCID iD 0000-0002-3988-7660. i_voevodin@list.ru

Ветлугина Тамара Парфёновна, д.б.н., профессор, главный научный сотрудник лаборатории клинической психонейроиммунологии и нейробиологии, руководитель отдела биологической психиатрии и наркологии НИИ психического здоровья Томского НИМЦ. SPIN-код РИНЦ 4237-1873. ResearcherID C-2144-2012. Author ID Scopus 6603120359. ORCID iD 0000-0003-2068-0931. vetluga21@mail.ru

Кисель Наталья Игоревна, к.м.н., психиатр, нарколог, заведующая четвертым клиническим психиатрическим отделением НИИ психического здоровья Томского НИМЦ. SPIN-код РИНЦ 2861-1544. ResearcherID J-2817-2017. Author ID РИНЦ 974543. tashakisa@yandex.ru

Прокопьева Валентина Даниловна, д.б.н., ведущий научный сотрудник лаборатории клинической психоней-роиммунологии и нейробиологии НИИ психического здоровья Томского НИМЦ. SPIN-код РИНЦ 8927-5645. ResearcherID J-1713-2017. Author ID Scopus 6601960775. ORCID iD 0000-0002-4811-984X. Author ID РИНЦ 123653. valyaprok@mail.ru

Бедарев Роман Игоревич, врач психиатр-нарколог клиники НИИ психического здоровья Томского НИМЦ. SPIN-код РИНЦ 7054-7729. yaneheal@gmail.com

Аболонин Алексей Федорович, к.м.н., старший научный сотрудник НИИ психического здоровья Томского НИМЦ. SPIN-код РИНЦ 6890-5624. ResearcherID J-3147-2017. Author ID Scopus 6504693618. ORCID iD 0000-0002-3559-5441. abolonin2004@mail.ru

Бохан Николай Александрович, академик РАН, д.м.н., профессор, заслуженный деятель науки РФ, заведующий отделением аддиктивных состояний, директор НИИ психического здоровья Томского НИМЦ, заведующий кафедрой психиатрии, наркологии и психотерапии ФГБОУ ВО СибГМУ Минздрава России. ResearcherID P-1720-2014. Author ID Scopus 6506895310. ORCID iD 0000-0002-1052-855X. Author ID РИНЦ 152392. SPIN-код РИНЦ 2419-1263. bna909@gmail.com

UDC 616-092.6:616.89:613.81:612.017.1:616-002.2:616.8-085.2/.3

For citation: Epimakhova E.V., Voevodin I.V., Vetlugina T.P., Kisel N.I., Prokopieva V.D., Bedarev R.I., Abolonin A.F., Bokhan N.A. Sodium aminodihydrophthalazinedione in the complex therapy of patients with alcohol dependence. Siberian Herald of Psychiatry and Addiction Psychiatry. 2025; 3 (128): 60-68. https://doi.org/10.26617/1810-3111-2025-3(128)-60-68

Sodium aminodihydrophthalazinedione in the complex therapy of patients with alcohol dependence

Epimakhova E.V.¹, Voevodin I.V.¹, Vetlugina T.P.¹, Kisel N.I.¹, Prokopieva V.D.¹, Bedarev R.I.¹, Abolonin A.F.¹, Bokhan N.A.^{1, 2}

ABSTRACT

Background. Chronic alcohol consumption reduces the number of innate immune cells (NK cells), weakens the body's immune defense, and impairs the effectiveness of alcohol dependence (AD) treatment. Including drugs that optimize immune regulation in the treatment complex is rational and justified. Objective: to study the effect of adjuvant therapy with the inclusion of sodium aminodihydrophthalazinedione in the rehabilitation complex on NK cells and clinical parameters of patients with alcohol dependence. Materials and Methods. At the Department of Addictive States of the Mental Health Research Institute of Tomsk National Research Medical Center, we examined 65 male patients with an ICD-10 diagnosis of "Mental and behavioral disorders due to alcohol use (dependence syndrome - F10.21 and withdrawal syndrome – F10.30)" with an average disease duration of 15.0±9.5 years. Patients of the main group (n=40) were prescribed the immunomodulator sodium aminodihydrophthalazinedione (Galavit®) at a dose of 100 mg/day for 10 days in addition to standard therapy on days 2-3 of treatment. Patients of the comparison group (n=25) received standard therapy. Clinical and biological studies were conducted dynamically: point 1 - on days 2-3 of treatment, point 2 - after 14-17 days of therapy. NK cell phenotyping was performed in whole blood using a BD Facs Calibur flow cytometer. To assess the clinical condition of patients, the following were used: Hospital Anxiety and Depression Scale (HADS), Quantified Scale of Comprehensive Assessment of Psychopathological Disorders in Remission (QRSOPRR), Pennsylvania Alcohol Craving Scale (PACS). Results. At point 1, a statistically significant decrease in the number of NK cells was observed in patients in both groups compared to the control (25 healthy men). During therapy, an increase in the number of NK cells was noted in the main group of patients at point 2 compared to point 1. The overall clinical effect was more pronounced in the main group, with the most significant being the normalization of the anxiety index. Conclusion. Complex treatment with the inclusion of sodium aminodihydrophthalazinedione increases the number of NK cells in the blood of patients with AD and improves the quality of remission formation, including through a reduction in anxiety symptoms, as well as an improvement in the general condition of patients.

Keywords: alcohol dependence, alcoholism, innate immunity, NK-cells, sodium aminodihydrophthalazinedione, Galavit®, post-abstinence state, remission.

Received April 30, 2025

Accepted September 15, 2025

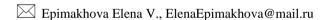
¹ Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences Aleutskaya Street 4, 634014, Tomsk, Russian Federation

² Federal State Budgetary Educational Institution of Higher Education "Siberian State Medical University" of the Ministry of Health of the Russian Federation Moskovsky Trakt 2, 634050, Tomsk, Russian Federation

Epimakhova Elena V., Cand. Sc. (Biology), researcher, Addictive States Department of Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation. SPINcode RSCI 7021-5740. ResearcherID J-3122-2017. Author ID Scopus 57216672615. ORCID iD 0000-0002-9304-4496. Author ID RSCI 131438.

Voevodin Ivan V., D. Sc. (Medicine), lead researcher, Addictive States Department, Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation. SPIN-code RSCI 5675-7498. ResearcherID J-2399-2017. Author ID Scopus 56299783700. ORCID iD 0000-0002-3988-7660. i_voevodin@list.ru

Vetlugina Tamara P., D. Sc. (Biology), Professor, chief researcher of the Laboratory of Clinical Psychoneuroimmunology and Neurobiology, head of the Department of Biological Psychiatry and Narcology of Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation. SPIN-code RSCI 4237-1873. ResearcherID C-2144-2012. Author ID Scopus 6603120359. ORCID iD 0000-0003-2068-0931. Author ID RSCI 137410. vetluga21@mail.ru


Kisel Natalia I., Cand. Sc. (Medicine), psychiatrist, addiction specialist, head of the fourth clinical psychiatric unit, Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation. SPIN-code RSCI 2861-1544. ResearcherID J-2817-2017. Author ID RSCI 974543. tashakisa@yandex.ru

Prokopieva Valentina D., D. Sc. (Biology), lead researcher, Laboratory of Clinical Psychoneuroimmunology and Neurobiology of Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation. SPIN-code RSCI 8927-5645. ResearcherID J-1713-2017. Author ID Scopus 6601960775. ORCID iD 0000-0002-4811-984X. Author ID RSCI 123653. valyaprok@mail.ru

Bedarev Roman I., psychiatrist-narcologist of the clinic, Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation. SPIN-code RSCI 7054-7729. yaneheal@gmail.com

Abolonin Alexey F., Cand. Sc. (Medicine), researcher, Addictive States Department of Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation. SPINcode RSCI 6890-5624. ResearcherID J-3147-2017. Author ID Scopus 6504693618. ORCID iD 0000-0002-3559-5441. abolonin2004@mail.ru

Bokhan Nikolay A., Academician of RAS, D. Sc. (Medicine), Professor, Honored Scientist of the Russian Federation, Head of the Addictive States Department, director of the Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Head of the Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Tomsk, Russian Federation. ResearcherID P-1720-2014. Author ID Scopus 6506895310. ORCID iD 0000-0002-1052-855X. Author ID RSCI 152392. SPIN-code RSCI 2419-1263. bna909@gmail.com

